

Avon High School AP Calculus AB

Name _____

Unit 2 Review DIFFERENTIATION – Definition of Derivative and Basic Derivative Rules

3.) If $f(2) = 3$ and $f'(2) = -1$, find the equation	4.) Find the equation of the tangent line to the graph
of the tangent line when $x = 2$.	of $f(x) = x^2 - 2x - 3$ when $x = 2$.
5.) Differentiate $y = \frac{3x}{x^2 + 1}$	 6.) For the function f(t) = t³ + 2/t, find the following. a.) the average rate of change of f(t) on the interval [1, 4] b.) the instantaneous rate of change of f(t) when t = 2

7.) Suppose that
$$h(x) = \frac{g(x)}{f(x)}$$
 and
 $g(2) = 3, g'(2) = -1, f'(2) = 5, f'(2) = -2.$
Find $h'(2)$.
8.) Let $f(x) = \begin{cases} ax, & x \le 1 \\ bx^2 + x + 1, & x > 1 \end{cases}$. Find all
possible values of a and b such that $f(x)$ is
differentiable at $x = 1$.
Show proper justification.
9.) If $f(x) = 2x^2 + 4$, which of the following will calculate the derivative of $f(x)$?
(A) $\frac{|2(x + \Delta x)^2 + 4| - (2x^2 + 4)}{\Delta x}$ (B) $\lim_{\Delta \to 0} \frac{(2x^2 + 4 + \Delta x) - (2x^2 + 4)}{\Delta x}$
(C) $\lim_{X \to 0} \frac{|2(x + \Delta x)^2 + 4| - (2x^2 + 4)}{\Delta x}$ (D) $\frac{(2x^2 + 4 + \Delta x) - (2x^2 + 4)}{\Delta x}$
10. Let $h(x) = f(x) \cdot g(x)$.
Find $h'(2)$.
(A) -2 (B) 1
(C) 7 (D) -1
11.) What is $g'(3)$?

12.) One lazy day, Uncle Si decides to sit under a shade tree next to a road by the swamp and count the											
number of ducks which cross the road. The data in the table below shows the accumulation of the											
number of ducks crossing this road at each no	our att	er 9:0	0am.								
Hours after 9AM	0	1	2	3	4	5	6	7			
# of ducks that have crossed the road	0	3	8	11	12	21	24	28			
Find the following:											
a.) Determine the average number of ducks which have crossed the road per hour during Uncle Si's 7-hour observation. Label your result. b.) Estimate the value of $f'(4.5)$ and explain its meaning.											
13.) $\lim_{\Delta x \to 0} \frac{\left[2(-2 + \Delta x)^3 - 2(-2 + \Delta x) - 2\right] - (-14)}{\Delta x}$ Find $f(x)$ and c .	repres	ents <i>j</i>	<i>c</i> '(c) f	for a f	unctio	n f(s	x) and	l a num	ber c .		
14.) Suppose that $f(x)$ and $g(x)$ and their derivative derivative $g(x)$ and $g(x)$	atives	have	the fol	lowin	g valu	es at .	x = -1	l and x	c = 0.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Evaluate the first derivative of each of the following	g comł	binatio	ns of <i>f</i>	f(x)a	nd $g($.	x)at th	ne give	en value	e of x .		
a.) $3f(x) - g(x)$, $x = -1$ b.) $3f(x) \cdot g(x)$, <i>x</i> :	=-1		c.) -	$\frac{f(x)}{g(x)}$)-2,	x = 0				

