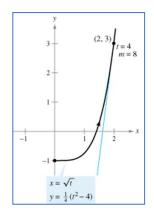

Because dy/dx is a function of t, you can use Theorem 9.2 repeatedly to find *higher-order* derivatives.


Example 1: Finding the Second Derivative of a Parametric Equation of the following:

a.)
$$x(t) = e^t, y(t) = te^{-t}$$

b.)
$$x(t) = \cos t$$
, $y(t) = \sin 2t$, $0 < t < \pi$

Example 2: Finding Slope and Concavity

For the curve given by $x = \sqrt{t}$ and $y = \frac{1}{4}(t^2 - 4)$, $t \ge 0$, find the slope and concavity at the point (2, 3).

Code above to watch a video covering Example 2

Fundamental Theorem of Calculus with Parametric Equations

Example 3: Position Desired

A particle moving along a curve in the xy-plane is at position (x(t), y(t)) at time t, where

$$\frac{dx}{dt} = ln(t+1), \frac{dy}{dt} = arcsin(e^{-t^2})$$
 for $t \ge 0$. At time $t = 1$ the particle is at position (2, 5).

a.) Find the slope of the tangent line to the curve at position (2, 5).

Scan the QR Code above to watch a video covering Example 3

b.) Find the *x*-coordinate of the position of the particle at time t = 3.