Pre-Calculus Notes Name: _____ Section 3.2 – Logarithmic Functions

Since the exponential function $f(x) = b^x$ is one-to-one, it has an inverse function. The inverse function of an exponential function is called a logarithmic function.

MEMORIZE: If $x = b^y$, then $y = \log_b x$. **AND** If $y = \log_b x$, then $x = b^y$.

EXAMPLE 1: Graph the function in ONE COLOR. Then graph its INVERSE in a SECOND COLOR.

MEMORIZE:

A logarithm with a base of 10 is a common logarithm. So, instead of writing $\log_{10} x$, we will write $\log x$.

A logarithm with a base of "e" is a natural logarithm. So, instead of writing $\log_e x$, we will write $\ln x$.

$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = e \text{ and } e \approx 2.718281828...$$

Crampio Li			
a. $4^3 = 64$		b. $10^3 = 1000$	c. $e^{-2} \approx 0.14$

Example 2: Rewrite each expression in logarithmic form.

Example 3: Rewrite each expression in exponential form.

a. $\ln 2 \approx 0.70$	b. $\log_5 125 = 3$	c. $\log 0.1 = -1$

Example 4: Use the definition of logarithmic function to evaluate each logarithm. NO CALCULATOR!

a. log ₂ 32	b. log ₃ 1	c. log ₄ 2	d. $\log_{10} \frac{1}{100}$

Example 5: Evaluate with the calculator. Round to 3 decimal places.

			p	
a. log 25	b. ln 0.34	c. $\log x = 2.014$	d. $\ln x = -4$	$e. \log x = 0$

MEMORIZE: Change of Base Formula

The Change of Base Formula is used in order to evaluate a logarithm with a base other than 10 in the calculator. The Change-of-Base Formula is $\log_b x = \frac{\log_a x}{\log_a b}$

Example 6:	Use the change of base formula to evaluate to 3 decimal places.	
------------	---	--

a. log ₂ 15	b. log ₁ 20	c. $\log_{\sqrt{6}} 1.5$
	4	