$\qquad$

## section 3.2 - Logarithmic Functions

Since the exponential function $f(x)=b^{x}$ is one-to-one, it has an inverse function. The inverse function of an exponential function is called a logarithmic function.

MEMORIZE: if $x=b^{y}$, then $y=\log _{b} x$. AND if $y=\log _{b} x$, then $x=b^{y}$.

EXAMPLE 1: Graph the function in ONE COLOR. Then graph its INVERSE in a SECOND COLOR.

| ORIGINAL FUNCTION: $y=2^{x}$ |
| :---: |
| Domain: __ Range: |
| X-Intercepts: |
| Y-Intercepts: |
| Increasing or Decreasing? |
| Equation of Asymptote: |
| INVERSE FUNCTION: |
| Domain: __ Range: |
| X-Intercepts: |
| Y-Intercepts: |
| Increasing or Decreasing? |
| Equation of Asymptote: |



## MEMORIZE:

A logarithm with a base of 10 is a common logarithm. So, instead of writing $\log _{10} x$, we will write $\log x$.

A logarithm with a base of " $e$ " is a natural logarithm. So, instead of writing $\log _{e} x$, we will write $\ln x$. $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$ and $e \approx 2.718281828 \ldots$

Example 2: Rewrite each expression in logarithmic form.

| a. $4^{3}=64$ | b. $10^{3}=1000$ | c. $e^{-2} \approx 0.14$ |
| :--- | :--- | :--- |

Example 3: Rewrite each expression in exponential form.

| a. $\ln 2 \approx 0.70$ | b. $\log _{5} 125=3$ | c. $\log 0.1=-1$ |
| :--- | :--- | :--- |
|  |  |  |

Example 4: Use the definition of logarithmic function to evaluate each logarithm. NO CALCULATOR!

| a. $\log _{2} 32$ | b. $\log _{3} 1$ | c. $\log _{4} 2$ | d. $\log _{10} \frac{1}{100}$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |

Example 5: Evaluate with the calculator. Round to 3 decimal places.

| a. $\log 25$ | b. $\ln 0.34$ | c. $\log x=2.014$ | d. $\ln x=-4$ | e. $\log x=0$ |
| :--- | :--- | :--- | :--- | :--- |

## MEMORIZE: Change of Base Formula

The Change of Base Formula is used in order to evaluate a logarithm with a base other than 10 in the calculator. The Change-of-Base Formula is $\log _{b} x=\frac{\log _{a} x}{\log _{a} b}$

Example 6: Use the change of base formula to evaluate to 3 decimal places.

| a. $\log _{2} 15$ | b. $\log _{\frac{1}{4}} 20$ | c. $\log _{\sqrt{6}} 1.5$ |
| :--- | :--- | :--- |

