Graphing: $y=a \cdot b^{x} \quad($ when $a<0)$

$$
\begin{aligned}
& y=\left(\frac{1}{2}\right) \cdot 2^{x} \\
& y=\left(-\frac{1}{2}\right) \cdot 2^{x}
\end{aligned}
$$

label: exponent $=0$ and $=1$
reflection over x-axis
asymptote: $y=0$

Translating: $y=a \cdot b^{x}$

$$
\begin{aligned}
& y=6 \cdot\left(\frac{1}{2}\right)^{x} \\
& y=6 \cdot\left(\frac{1}{2}\right)^{x-3}-2
\end{aligned}
$$

(right 3 and down 2)

Example:

$y=2 \cdot(4)^{x-1}+3$

Example:

$y=-3 \cdot(0.8)^{x+2}$

Application: Using the fact that Technetium-99 has a half-life of 6 hours, find the amount of Technetium-99 that remains from a 50 mg supply after 25 hours.

Number of hours	0	6	12	18	24	30
Number of 6 hour intervals	0	1	2	3	4	5
mg of Technetium-99	50	25	12.5	6.25	3.125	1.5625

$y=$ amount of Technetium- 99
$x=$ number of hours
$\left(\frac{1}{6} x\right)=$ number of half-life periods
$y=50\left(\frac{1}{2}\right)^{\frac{1}{6} x}$
$y=50\left(\frac{1}{2}\right)^{\frac{1}{6}(25)}$
$y=2.784 \mathrm{mg}$

How much Technetium-99 will remain after 15 hours?

Graph of $y=e^{x}$

estimate e^{3} to 4 decimal places

$$
e^{3} \approx 20.0855
$$

Continuously Compounded Interest Formula

$$
A=P e^{r t}
$$

Example: Suppose you invest $\$ 100$ at an annual interest rate of 4.8% compounded continuously. How much will you have in the account after 3 years?

