

Application: Using the fact that Technetium-99 has a half-life of 6 hours, find the amount of Technetium-99 that remains from a 50 mg supply after 25 hours.

Number of hours	0	6	12	18	24	30
Number of 6 hour intervals	0	1	2	3	4	5
mg of Technetium-99	50	25	12.5	6.25	3.125	1.5625

y = amount of Technetium-99

x = number of hours

 $\left(\frac{1}{6}x\right)$ = number of half-life periods

How much Technetium-99 will remain after 15 hours?

estimate e^3 to 4 decimal places

 $e^3 \approx 20.0855$

 $y = 50 \left(\frac{1}{2}\right)^{\frac{1}{6}x}$ $y = 50 \left(\frac{1}{2}\right)^{\frac{1}{6}(25)}$

y = 2.784 mg

Continuously Compounded Interest Formula

$$A = Pe^{rt}$$

Example: Suppose you invest \$100 at an annual interest rate of 4.8% compounded continuously. How much will you have in the account after 3 years?