Exponential Function
$y=a \cdot b^{x}$
$a \neq 0$
$b>1$
growth factor
$0<b<1$
decay factor

Ex. 1 Graph: $y=3^{x}$

x	$y=3^{x}$
-3	
-2	
-1	
0	
1	
2	
3	

Ex 2: The population of the U.S. in 1994 was about 260 million people with an average annual increase of about 0.7%.
Find the growth factor for that year.

Suppose the rate of growth has continued to be 0.7%.
Write a function to model this population growth.

Use this model to predict the U.S. population in 2018.

Ex 3: Write an exponential function $y=a \cdot b^{x}$ for a graph that includes the points $(1,6)$ and $(0,2)$.

Exponential Decay: $y=a \cdot b^{x} \quad$ (when $0<b<1$)
Ex 4. Graph: $y=30 \cdot(0.5)^{x}$

x	$y=30 \cdot(0.5)^{x}$
-3	
-2	
-1	
0	
1	
2	
3	

Ex. 5 Compare the graphs of $y=3 \cdot(0.1)^{x}$ and $y=3 \cdot(0.9)^{x}$ and $y=3 \cdot(1.1)^{x}$ on your calculator.

Ex. 6 Without graphing, determine if the function is an exponential growth or an exponential decay.

$$
\begin{aligned}
& y=5 \cdot 2^{x} \\
& y=\frac{2}{3} \cdot 3^{x} \\
& y=6 \cdot\left(\frac{2}{5}\right)^{x} \\
& y=5 \cdot(1.003)^{x} \\
& y=2.6 \cdot(0.85)^{x}
\end{aligned}
$$

Ex. 7. Suppose you buy a used car for $\$ 11,800$. The expected depreciation is 20% per year. Estimate the depreciated value of your car after 6 years.

